The time constant vanishes only on the percolation cone in directed first passage percolation

نویسنده

  • Yu Zhang
چکیده

We consider the directed first passage percolation model on Z2. In this model, we assign independently to each edge e a passage time t(e) with a common distribution F . We denote by ~ T (0, (r, θ)) the passage time from the origin to (r, θ) by a northeast path for (r, θ) ∈ R+ × [0, π/2]. It is known that ~ T (0, (r, θ))/r converges to a time constant ~μF (θ). Let ~ pc denote the critical probability for oriented percolation. In this paper, we show that the time constant has a phase transition divided by ~ pc, as follows: (1) If F (0) < ~ pc, then ~μF (θ) > 0 for all 0 ≤ θ ≤ π/2. (2) If F (0) = ~ pc, then ~μF (θ) > 0 if and only if θ 6= π/4. (3) If F (0) = p > ~ pc, then there exists a percolation cone between θ − p and θ + p for 0 ≤ θ− p < θ+ p ≤ π/2 such that ~μ(θ) > 0 if and only if θ 6∈ [θ− p , θ+ p ]. Furthermore, all the moments of ~ T (0, (r, θ)) converge whenever θ ∈ [θ− p , θ+ p ]. As applications, we describe the shape of the directed growth model on the distribution of F . We give a phase transition for the shape divided by ~pc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limiting Shape for Directed Percolation Models

We consider directed first-passage and last-passage percolation on the non-negative lattice Zd+, d ≥ 2, with i.i.d. weights at the vertices. Under certain moment conditions on the common distribution of the weights, the limits g(x) = limn→∞ n T (⌊nx⌋) exist and are constant a.s. for x ∈ Rd+, where T (z) is the passage time from the origin to the vertex z ∈ Zd+. We show that this shape function ...

متن کامل

On the Non-convexity of the Time Constant in First-passage Percolation

We give a counterexample to a conjecture of Hammersley and Welsh (1965) about the convexity of the time constant in first–passage percolation, as a functional on the space of distribution functions. The present counterexample only works for first–passage percolation on Z d for d large.

متن کامل

Electronic Communications in Probability on the Non-convexity of the Time Constant in First-passage Percolation

We give a counterexample to a conjecture of Hammersley and Welsh (1965) about the convexity of the time constant in rst{passage percolation, as a functional on the space of distribution functions. The present counterexample only works for rst{passage percolation on Z Z d for d large.

متن کامل

Nondifferentiability of the Time Constants of First-passage Percolation

We study the paths of minimal cost for first-passage percolation in two dimensions and obtain an exponential bound on the tail probability of the ratio of the lengths of the shortest and longest of these. This inequality permits us to answer a long-standing question of Hammersley andWelsh (1965) on the shift differentiability of the time constant. Specifically, we show that for subcritcal Berno...

متن کامل

On a Lower Bound for the Time Constant of First-passage Percolation

We consider the Bernoulli first-passage percolation on Z (d ≥ 2). That is, the edge passage time is taken independently to be 1 with probability 1− p and 0 otherwise. Let μ(p) be the time constant. We prove in this paper that μ(p1)− μ(p2) ≥ μ(p2) 1− p2 (p2 − p1) for all 0 ≤ p1 < p2 < 1 by using Russo’s formula. AMS classification: 60K 35. 82B 43.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008